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Microwave Permittivity Measurement Using a
Multipoint Technique

M. RODRiGUEZ-VIDAL, SENIOR MEMBER, IEEE, E. MARTiN,

AND M. SANCHO

Abstracf—A mnltipoint technique for complex permittivity meas-

urements is described. This method is based on experimental

determination and fitting of the field pattern existing in the sample

placed inside a short-circuited slotted wavegnide and verified with

experimental results.

L INTRODUCTION

The usual techniques for measuring complex electrical permit-

tivities at microwave frequencies are of the point type, in that they
yield information of the propagation constant in the sample from a

minimum number of experimental parameters. Thus, for example,

the Roberts–von Hippel method [1], one of the most widely used
at these frequencies, in which the measurement of the standing-
wave ratio, the location of a minimum of the field, and the wave-
length in the medium outside the sample, permits the knowledge of
the propagation constant in the sample and, from th~j the electrical
permittivity of the material.

There are also precision multipoint techniques [2] in which a

large number of data points are averaged by means of curves that

are selected by analytic curve fitting techniques, though they are

best suited to liquids, in which is possible the continuous variation

of come experimental parameter, or otherwise by means of sliding
terminations that usually introduce additional errors.

The method described here ie of the precision type, and is based

on the experimental determination of the field pattern in the sample,
which is arranged as specified later, and on the least square fitting
of the said pattern in order to obtain the wave propagation constant
in the material. This method is not only applicable to liquids but
also to solids, and this constitutes the aim of our measurements.

II. FUNDAMENTALS OF THE METHOD

The experimental arrangement is similar to that used in the

Robertis-von Hippel method, as shown in Fig. 1, it being thus

possible to obtain experimentally the existing field pattern just

outside the sample.
The propagating mode in the waveguide is the TE,O, in which the

electric field is in the y direction, being perpendicular to the air–

dielectric interface in the upper part of the sample [Fig. 1 (b )].
Then the detected field Ee (z ) is related to that existing inside the

sample E.(z) by the equation

Eo (z) = CJlz (z) (1)

where c? is the relative permittivit y of the material. This field
E,(z) must be detected just next to the sample because it is rapidly
attenuated by placing the electrical probe away from the slot.

If (3 is the complex propagation constant in the dielectric and tak-
ing the short circuit as the origin of the z axis, the analytic expression

of the field, discarding for the moment the possible generation of

new modes, will be

I II(z,) ] = A \ exp (jdz,) – exp (–jf?z~) I (2)

that is to say, a superposition of the waves incident and reflected
at the short circuit; however, the experimental values are usually
proportional to the square of this magnitude because of the response
law of the detector. In (2), z, represents the dietances from the ob-

servation points to the short circuit, and A is a constant which is
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Fig. 1. Measurement cell,

elimhated in the numerical process described later. As previously
mentioned, this numerical process results in the complex propw
gation constant in the material, which is related to its relative

dielectric constant by [1]

(3’ + (27r/&)’
(3)

“ = (27r/xo)2 + (2?r/A.)’

where h is the cutoff wavelength in the guide and xo the wavelength
in the medium preceding the sample.

For greater speed in the numerical fitting process, an approximate
knowledge of the value of L?is necessary:

A. = i%.’ – m.”. (4)

This value may be obtained by means of the position of two con-

secutive minima, Z1 and z2, and from the field value in one of them
E’ when the field values have been normalized relative to the max-

imum of the pattern. Then, it maybe easily obtained from (2) that,
approximately,

,6s.’ = T/(z’ – .&)

Pm” = E1/z’. (5)

III. METHODS OF COMPUTATION

Applying the least square fitting technique, the numerical process

is based on making a sweep of the (? values around the approximate
one P*P, the correct value of p being that which gives the minimum
of the variance. The width of the sweep has to be narrow enough to

prevent the numerical process from introducing an appreciable

error; for this reason, the scanning has been made in two successive

iterations, initially with intervals of & 5 and + 20 percent around
&D’ and &“, respectively, sampling 100 points in such intervals,

and then repeating the same procedure but with division of the

intervals by 100 around the previously found optimum d. This
procedure results in a final precision of 0.001 percent in (3’ and of
0.004 percent in g?”, surely greater than the experimental one,

estimated, as is later seen, at 0.05 percent and a few percent, re-
spectively.

A method of linearization [3] has also been tested as a fitting
technique. This procedure consists of developing the function f:

f(z,L?,/Y’ ) = A ] exp ( ji+z) – exp ( –j&) I

= lt[2 (cosh (2&z) – COS (2(3’2 ) ) ]’/2 (6)

which must fit the experimental data Y~ in a Taylor series rounded

off in the first powers around BO’ and bo”, the supposed solutions of
our problem which minimize the variance:

var = Z (Yi – .f(z.,fY,L3° ) )Z. (7)
i

The transcendental equations which characterize the lesst square
method:

d var a var
—= — =0

ap’ .30”
(8)

lead, in thk case, to a system of linear equations. By giving ap-

proximate initial values to (3’ and ~“ it is possible to establiih an



SHORT PAPERS

iterative correction process from the solution of the linear system.
Thk process converges in our case due to the fact that we possess a

sufficiently approximated initial value of the propagation constant:
However, the results obtained led us to reject this method in

favor of the one previously described; because, though the time

spent on the fitting process is less, its c~nvergence possesses an
oscillating character with appreciable arnphtudes which prevent us
from obtaining sufficiently accurate results.

An alternative procedure which we have tried was to apply the
Newton–Raphson technique [4], in order to solve the transcendental

equations involved. The resulting equations were similar to those
in the linearization method but included terms with second deriva-

tives ih the function ~(z,p’,o” ), while in the linearization method the

development is stopped at the first derivatives. However, the results

obtained with both techniques are not very different, although, in-

cluding the second derivatives, the oscillating amplitudes in the

convergence process were slightly reduced.

IV. RESULTS

A. SlottedSectio nCalibration

The proposed method is very useful for carrying out a calibration

of the slotted section being used as a measurement cell, by fitting
the field pattern which exists in the cell in the absence of the sample.

Working at a frequency of 8.9988 GHz with a Hewlett-Packard
X81 O B slotted guide, the resulting propagation constant was

P = (1.2893, –17.1 XIO-’) cm-’. (9)

Using thevalue obtained forthereal part and alsoa = 2.z85cm

forthe width of the guide, it may be shown that theresultingpre-

cision in the determination of the wavelength is 0.05 percent and,
consequently, according to (3), the resulting precision in the de-
termination of the real part of the permittivity will be in the order

of 0.1 percent. On the other hand, the waveguide losses (and the
sensitivity of the detection system) produce a loss angle:

tan~ = 12 X 10–4 (10)

a value which must be subtracted from the actual results in the

measurement of materials, and which, at the same time, constitutes
a limit in the sensitivity of the proposed method with respect to loss

measurements.

B. Dielectric Permittivity Metmurements

In the first place we present the results obtained frbm measure-
ments carried out over samples of various commercial plastics.
Both methods, the proposed one and that of Roberts–von Hippel
(inthefollowing, methodsl and2, respectively) were applied. The
results are shown in Table I..

In Table I, the symbols M, B, and E correspond to Metacrilate
(Perspex), Bakelite, and Ebonite, respectively, while the numbers
accompanying these symbols show the sample lengths in centimeters.

Ensamples ofsuch a length, 10andll cm, and, attheworklngfre-

quency 9.0 GHz, the problem of multiple roots of the transcendental

equation involved in method 2 is not easily overcome by means of the

technique of jointly processing the experimental data obtain~d in

two samples of different length. This is due to the fact that the

extreme length of the samples results in large values of the zeros of

the transcendental equation, and, therefore, the relative spacing
between those zeros is very small. Aethisproblem does not appear
in the proposed method, the values obtained .f:om it for the propa-
gation constant have been used in order to imtlate the resolution of

the transcendental equation in method 2. A simplified program of
that describedin [5]hasbeen developed for these calculations.

The differences between the values of the real part of the permit-

tivity d for the same material are all less than 0.6 percent. With
respect to the losses, the results obtained from one method in dif-
ferentsamples differ up to 12percent inthe case of Ebonite, whose

small losses horder upon the limit of sensitivity of themewurement
methods. However, in the case of greater losses, the differences are
less than 2 percent. The results obtained for the losses by the two

methods of measurement carried out over the same sample agree in
every case except for Bakelite, which presented the greatest per-
mittivity and losses of those materials measured. These differences
can be explained by the perturbation caused bythe nonshorted end
of the sample [6]. Whatever irregularity existsin the cutting of this

TABLE I
EXPERIMENTAL T7ALUES OF COMPLEX PEEMITTIVITY FOR

MATERIALS
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Sample

}! 10
M 1~

B 10

B ~1

E 10

E 1?

Method 1

.’ ian(8)x104

2.61~ 14s

2.613 742

3,361 322

3.356 334

2.636 28

2,620 32

Method 2

~ !, tan(6) x104

2.618 142

2.627 142

3,361 374

3,352 373

2,640 29

2,633 30

end will generate transmission modes higher than the fundamental

one in the guide, which, although being evanescent, will receive
a certain amount of power, resulting in aa apparent increase in the

measured losses. This problem will always represent inthe Roberts–

von Hippel method due to the fact that the measurements are carried
out in the medium preceding the sample. However, with the proposed
method, we can eliminate the perturbation caused by the generated

new modes simply by making the measurements at points far enough
from the nonshorted end of the sample, as shown in the data pre-

sented later.
If there is any evidence of the existence of propagating modes,

other than the fundamental, there are two possible solutions. One

may take them into account by modifying (2), or otherwise by

making a transition to another waveguide of reduced dimensions in
order to convert thepropagating newmodes into evanescent modes.

We have observed that these problems and others, such as slot
leakage, become increasingly important, at 9 GHz, with relative

permittivities in the order of 10.
Another problem that may also be present is the existence of a gap

between the sample and the broad wall of the slotted line, ourex-
perience being that it is better to introduce aknown little gap and
then to correct the results [7].

The results of the measurements carried out over a sample of

Metacrilate, 11 cm long, at a frequency of 9.0 Ghz, are shown in

Table II. These results were obtained by fitting varioui numbers of

field values indifferent zones of the sample.
Taking as the most probable value for the permittivity that ob-

tained by fitting 40 field values located in zones far enough from the
nonshorted end of the sample, shown in line 12 of Table II, we find

that the value of d which most differs from thdt stated isthatob-
tainedby fitting a few points (10) inplaces near tothe end of the
sample (line 7), and, even in this case, the difference is less than
0.3 percent, being less than 0.1 percent in the remaining cases, a pre-
cision which had already been anticipated fortheproposed merwzre-
ment method.

With respect to the losses, in the two cases corresponding to lines
3 and 7, in which a few values around the top of the field pattern are

fitted, theresults differ more than 20percent relative to the initial

approximated values obtained by means of (5), a deviation which

TABLE II
RESULTS OBTAINED FOR ONE SAMPLE OF METACRILATE llCM LONG

—
~a Locatlonb .’ tan(81x~Oi

—

5 8,0 - B.25 2.619 119

10 8.0- B.5 2,6176 111

10 8,5- 9,0 2.6177 93

10 9.0- 9.5 2.6193 120

10 9,5-10.0 2.6205 121

10 10.0 -10.5 2.6203 120

10 10. 5-11.0 2.6261 93

20 8.0- 9.0 ?. ’a176 114

20 9.0-10.0 2.6196 1~9

20 10.0 -11.0 2.6176 132

30 8.0- 9.5 2,61S6 ~36

40 8. 0-10.0 2.6189 116

s N is the number of field points in the fitting process.
b Range of distances (in centimeters) from the short circuit.
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constitutes the limit provided in the numerical prograin. This
situation is a consequence of the accuracy that maybe obtained from
the shape of the maxima in the presence of losses.

In the ease of line 10, the losses differ by 13 percent, due the

aforestated probksn ,caused by the nonihorted end of the sample;

in fact, the%pparent losses obtained aregreater than the correct one.

In the remaining cases the differences are less than 4 percent.

V. CONCLUSIONS

A method for measuring the complex electrical permittivity at

microwave frequencies has been developed. It consists of ,the ex-
perimental determination and subsequent fitting of the field’ pattern
existing in a sample placed inside ri slotted waveguide closed by a
short circuit.

The estimated precision of this method is about 0.1 percent for the

real part of thepermittivity and afewpercent for the losses.
Owing to the fact that the oscillator in the experimental setup

works under constant load conditions, it is not necessary to achieve

a good isolation between the oscillator and the load, this being a
problem which is present in the greatest part of waveguide measure-

ment methods.
In comparison with the Roberts–von Hippel method, the proposed

one offers the advantage thxt the possibility of false results is

eliminated. On the other hand, it has been found that any irregularity
existing in the nonshorted end of the sample will generate new modes

which, even being evanescent, will produce an apparent increase in
the loses of the material, if the measurements are carried out in the
medium preceding the sample, as they are in the previously men-
tioned method. Thkproblem maybe eliminated with the proposed
method, carrying out themeasurements farenoughfi-om the end of

the sample, at least when measuring materials with sufficiently low

permittivities, to prevent new propagating modes.
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A Liimped-Elernent Circulator without Crossovers

R. H. KNERR, SENIOR MEMBER, IEEE

Absh-acf—It is proposed to construct a simple “crossoverless”

Iurhped-element circulator, which can be made without sophisticated

thin-film processing. The circulator cart be described by a “delta

connected’> equivalent circuit. A simple capacitor arrangement can

be used to influence the three eigenvalue phases of the circulator

independently, thus permitting this circulator to be maximized sys-

tematically. A eet of computer-generated eigenvalues gives insight

into the behavior of the device under varying operahng conditions.

Preliminary measurements using a very simple pattern on a 0.650-in-

diam ferrite substrate shbw a 20-dB bandwidth of 10 percerit and an

insertion loss < 1 dB (0.3 dB/min) at L band.
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INTRODUCTION

The construction of lumped-element circulators at. higher fre-

quencies [1 ]–[3] was made possible by using thin-film crossover

techniques which, together with a new approach to broad banding,

lead to a completely symmetrical broad-band lumped-element

circulator. In order to eliminate processing problems at even higher
frequencies, some studies were made to construct a small circulator

which does not necessitate any complicated processing. Some pre-
liminary L band results show that it is- possible to build such a

circulator. The theory proposed seems to be substantiated by eigen-
value measurements on a computerized network analyzer,

There exists a certain similarity with the ring circulator [3], [4].
However, the ring circulator uses th;ee delta connected nonreciprocal

phase shdters and the devices reahzed are significantly larger and
more complicated than the present device.

THEORY

A lumped-element circulator with its Y-connected equivalent

circuit shown schematically in Fig. 1 can be represented by an

impedance matrix of the general form

[I=KIIII‘r ‘v]=[z’[z]
or in admittance form:

[1

abc

[1] = [Z,]-l[V], for [Zl]–’ = c a b (1)

where, in the lossless case,

Re (a) = O

7* being the complex conjugate of ~.
Y and Z matrices have been chosen for the analysis because they

can be easily related to the equivalent circuit.
In the special case of Fig. 1,

(3)

where G is a geometry factor [1], [6] which determines the induct-
ance used in the equivalent circuits, and p and k are the elements of
the Polder tensor:

H
P –jk O

kk=PO jk I O . (4)

Lo O lJ

In the case where losses are taken into account, p and k become
complex numbers which depend on frequency, applied magnetic
field, and material parameters. It can be shown [6] that the matrix
equation (1 ), which is valid for the Y-connected three port, is also
valid for a A-connected one if the notation in Fig. 2 is used, i.e.,
Y “line” currents (1) become A “branch>~ currents (I). Since we are

interested in terminal quantities, the matrix equation

[1] = [Z,]-l[V] (5)

has to be transformed into

[i] = [Y,][u] (6)

using the notation in Fig. 2, where [6]


