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Microwave Permittivity Measurement Using a
Multipoint Technique

M. RODRIGUEZ-VIDAL, sENioR MEMBER, 1EEs, B. MARTIN,
AND M. SANCHO

Abstract—A multipoint technique for complex permittivity meas-
urements is described. This method is based on experimental
determination and fitting of the field pattern existing in the sample
placed inside a short-circuited slotted waveguide and verified with
experimental results.

I. INTRODUCTION

The usual techniques for measuring complex electrical permit-
tivities at microwave frequencies are of the point type, in that they
yield information of the propagation constant in the sample from a
minimum number of experimental parameters. Thus, for example,
the Roberts—von Hippel method [17, one of the most widely used
at these frequencies, in which the measurement of the standing-
wave ratio, the location of a minimum of the field, and the wave-
length in the medium outside the sample, permits the knowledge of
the propagation constant in the sample and, from this, the electrical
permittivity of the material.

There are also precision multipoint techniques [2] in which a
large number of data points are averaged by means of curves that
are selected by analytic curve fitting techniques, though they are
best suited to liquids, in which is possible the continuous variation
of some experimental parameter, or otherwise by means of sliding
terminations that usually introduce additional errors.

The method described here is of the precision type, and is based
on the experimental determination of the field pattern in the sample,
which is arranged as specified later, and on the least square fitting
of the said pattern in order to obtain the wave propagation constant
in the material. This method is not only applicable to liquids but
also to solids, and this constitutes the aim of our measurements.

II. FUNDAMENTALS OF THE METHOD

The experimental arrangement is similar to that used in the
Roberts—von Hippel method, as shown in Fig. 1, it being thus
possible to obtain experimentally the existing field pattern just
outside the sample.

The propagating mode in the waveguide is the TE;o, in which the
electric field is in the y direction, being perpendicular to the air—
dielectric interface in the upper part of the sample [Fig. 1(b)].
Then the detected field E,(2) is related to that existing inside the
sample E,(z) by the equation

Ey(2) = ¢E,(2) 1)

where e is the relative permittivity of the material. This field
E,y(z) must be detected just next to the sample because it is rapidly
attenuated by placing the electrical probe away from the glot.

- If B is the complex propagation constant in the dielectric and tak-
ing the short circuit as the origin of the z axis, the analytic expression
of the field, discarding for the moment the possible generation of
new modes, will be

[E(z.)| = Alexp (jBz.) — exp (—jBz:) | 2)

that is to say, a superposition of the waves incident and reflected
at the short circuit; however, the experimental values are usually
proportional to the square of this magnitude because of the response
law of the detector. In (2), 2, represents the distances from the ob-
servation points to the short circuit, and A is a constant which is
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Fig. 1. Measurement cell.

eliminated in the numerical process described later. As previously
mentioned, this numerical process results in the complex propa~
gation constant in the material, which is related to its relative
dielectric constant by [1]
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where A is the cutoff wavelength in the guide and s the wavelength
in the medium preceding the sample.

For greater speed in the numerical fitting process, an approximate
knowledge of the value of 8 is necessary:

Bap = Bap’ — JBap”’- (4)

This value may be obtained by means of the position of two con-
secutive minima, 2! and 2%, and from the field value in one of them
E! when the field values have been normalized relative to the max-
imum of the pattern. Then, it may be easily obtained from (2) that,
approximately,
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III. METHODS OF COMPUTATION

Applying the least square fitting technique, the numerical process
is based on making a sweep of the 8 values around the approximate
one By, the correct value of 8 being that which gives the minimum
of the variance. The width of the sweep has to be narrow enough to
prevent the numerical process from introducing an appreciable
error; for this reason, the scanning has been made in two successive
iterations, initially with intervals of =+ 5 and = 20 percent around
Bap’ and B,,", respectively, sampling 100 points in such intervals,
and then repeating the same procedure but with division of the
intervals by 100 around the previously found optimum . This
procedure results in a final precision of 0.001 percent in 8’ and of
0.004 percent in B/, surely greater than the experimental one,
estimated, as is later seen, at 0.05 percent and a few percent, re-
spectively.

A method of linearization [3] has also been tested as a fitting
technique. This procedure consists of developing the function f:

f(2,8.8") = A]exp (jB2) — exp (—jB=) |
= A[2(cosh (287z) — cos (28'z)) /2 (6)

whieh must fit the experimental data Y; in a Taylor series rounded
off in the first powers around 8¢’ and 8,”, the supposed solutions of
our problem which minimize the variance:

var = Z (Y — f(2,6,87))% (7)

The transcendental equations which characterize the least square
method:

8

lead, in this case, to a system of linear equations. By giving ap-
proximate initial values to 8’ and @'’ it is possible to establish an
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iterative correction process from the solution of the linear system.
This process converges in our case due to the fact that we possess a
sufficiently approximated initial value of the propagation constant:

However, the results obtained led us to reject this method in
favor of the one previously described; because, though the time
spent on the fitting process is less, its convergence possesses an
oscillating character with appréciable amplitudes which prevent us
from obtaining sufficiently accurate results.

An alternative procedure which we have tried was to apply the
Newton—Raphson technique [4], in order to solve the transcendental
equations involved. The resulting equations were similar to those
in the linearization method but included terms with second deriva-
tives in the funection f(2,8’,8’"), while in the linearization method the
development is stopped at the first derivatives. However, the results
obtained with both techniques are not very different, although, in-
cluding the second derivatives, the oscillating amplitudes in the
convergence process were slightly reduced.

IV. RESULTS

A. Slotted Section Calibration

The proposed method is very useful for carrying out a calibration
of the slotted section being used as a measurement cell, by fitting
the field pattern which exists in the cell in the absence of the sample.

Working at a frequency of 8.9988 GHz with a Hewlett-Packard
X810 B slotted guide, the resulting propagation constant was

8 = (1.2893, — 17.1 X 10~*) ecm™, 9)

Using the value obtained for the real part and also a = 2.285 cm
for the width of the guide, it may be shown that the resulting pre-
cision in the determination of the wavelength is 0.05 percent and,
consequently, according to (3), the resulting precision in the de-
termination of the real part of the permittivity will be in the order
of 0.1 percent. On the other hand, the waveguide losses (and the
sensitivity of the detection system ) produce a loss angle:

tand = 12 X 107 (10)

. & value which must be subtracted from the actual results in the
measurement of materials, and which, at the same time, constitutes
a limit in the sensitivity of the proposed method with respect to loss
measurements.

B. Drelectric Permattivity Meusurements

In the first place we present the results obtained from measure-
ments carried out over samples of various commercial plastics.
Both methods, the proposed one and that of Roberts—von Hippel
(in the following, methods 1 and 2, respectively) were applied. The
results are shown in Table I.

In Table I, the symbols M, B, and E correspond to Metacrilate
(Perspex ), Bakelite, and Ebonite, respectively, while the numbers
accompanying these symbols show the sample lengths in centimeters.
In samples of such a length, 10 and 11 em, and, at the working fre-
quency 9.0 GHz, the problem of multiple roots of the transcendental
equation involved in method 2 is not easily overcome by means of the
technique of jointly processing the experimental data obtained in
two samples of different length. This is due to the fact that the
extreme length of the samples results in large values of the zeros of
the transcendental equation, and, therefore, the relative spacing
between those zeros is very small. As this problem does not appear
in the proposed method, the values obtained from it for the propa-~
gation constant have been used in order to initiate the resolution of
the transcendental equation in method 2. A simplified program of
that described in [5] has been developed for these calculations.

The differences between the values of the real part of the permit-
tivity ¢’ for the same material are all less than 0.6 percent. With
respect to the losses, the results obtained from one method in dif-
ferent samples differ up to 12 percent in the case of Ebonite, whose
small losses border upon the limit of sensitivity of the measurement
methods. However, in the case of greater losses, the differences are
“ less than 2 percent. The results obtained for the losses by the two
methods of measurement carried out over the same sample agree in
every case except for Bakelite, which presented the greatest per-
mittivity and losses of those materials measured. These differences
can be explained by the perturbation caused by the nonshorted end
of the sample [6]. Whatever irregularity exists in the cutting of this
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TABLE 1
EXPERIMENTAL VALUES OF COMPLEX PERMITTIVITY FOR KNOWN
MATERIALS
Method 1 Method 2
Sample ¢! tan(s)x104 e tan(s)x104
M 10 2.613 145 2.618 142
M 11 2.613 142 2.627 142
B 10 3.361 322 3,361 374
B 11 3,356 334 3,352 373
E 10 2.636 28 2,640 29
E 11 2,620 32 2,633 30

end will generate transmission modes higher than the fundamental
one in the guide, which, although being evanescent, will receive
a certain amount of power, resulting in an apparent increase in the
measured losses. This problem will always be present in the Roberts—
von Hippel method due to the fact that the measurements are carried
out in the medium preceding the sample. However, with the proposed
method, we can eliminate the perturbation caused by the generated
new modes simply by making the measurements at points far enough
from the nonshorted end of the sample, as shown in the data pre-
sented later.

If there is any evidence of the existence of propagating modes,
other than the fundamental, there are two possible solutions. One
may take them into account by modifying (2), or otherwise by
making a transition to another waveguide of reduced dimensions in
order to convert the propagating new modes into evanescent modes.
We have observed that these problems and others, such as slot
leakage, become inereasingly important, at 9 GHz, with relative
permittivities in the order of 10.

Another problem that may also be present is the existence of a gap
between the sample and the broad wall of the slotted line, our ex-
perience being that it is better to introduce a known little gap and
then to correct the results [77].

The results of the measurements carried out over a sample of
Metacrilate, 11 cm long, at a frequency of 9.0 Ghz, are shown in
Table II. These results were obtained by fitting various numbers of
field values in different zones of the sample. -

Taking as the most probable value for the permittivity that ob-
tained by fitting 40 field values located in zones far enough from the
nonshorted end of the sample, shown in line 12 of Table II, we find
that the value of ¢ which most differs from that stated is that ob-
tained by fitting a few points (10) in places near to the end of the
sample (line 7), and, even in this case, the difference is less than
0.3 percent, being less than 0.1 percent in the remaining cases, a pre-
cision which had already been anticipated for the proposed measure-
ment method.

With respect to the losses, in the two cases corresponding to lines
3 and 7, in which a few values around the top of the field pattern are
fitted, the results differ more than 20 percent relative to the initial
approximated values obtained by means of (5), a deviation which

TABLE 11
ResvrTs OBTAINED FOR ONE SAMPLE OF METACRILATE 11 cM LoNg
Ne LocationD e! tan(ﬂx]ﬂ“
5 §.0- 8.25 2,619 119
10 8.0- 8.5 2.6176 111
10 8.5- 9.0 2.6177 93
10 9.0- 9.5 2.6193 120
10 9.5-10.0 2.6205 121
10 10.0-10.5 2.6203 120
10 10.5-11.0 2.6261 93
20 8.0~ 9.0 2.6176 114
20 9,0-10.0 2.6196 119
20 10.0-11.0 2.6176 132
30 8.0- 9.5 2.6186 116
40 8.0-10.0 2.6189 116

3 N is the number of field points in the fitting process. .
b Range of distances (in centimeters) from the short circuit.
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constitutes the limit provided in the numerical program. This
situation is consequence of the accuracy that may be obtained from
the shape of the maxima in the presence of losses.

In the case of line 10, the losses differ by 13 percent, due the
aforestated problem caused by the nonshorted end of the sample;
in fact, the apparent losses obtained are greater than the correct one.
In the remaining cases the differences are less than 4 percent.

V. CONCLUSIONS

A method for measuring the complex electrical permittivity at
microwave frequencies has been developed. It consists of the ex-
perlmental determination and subsequent fitting of the field pattern
existing in a sample placed 1n31de 4 slotted waveguide closed by a
short circuit,.

The estimated precision of this method is about 0.1 percent for the
réal part of the permittivity and a few percent for the losses.

Owing to the fact that the oscillator in the experimental setup
works under constant load conditions, it is not necessary to achieve
a good isolation between the oscillator and the load, this being a

problem which is present in the greatest part of waveguide measure-

ment methods.

In comparison with the Roberts—von Hippel method, the proposed
one offers the advantage that the possibility of false results is
eliminated. On the other hand, it has been found that any irregularity
existing in the nonshorted end of the sample will generate new modes
which, even being evanescent, will produce an apparent increase in
the loses of the material, if the measurements are carried out in the
medium preceding the sample, as they are in the previously men-
tioned method. This problem may be eliminated with the proposed
method, carrying out the measurements far enough from the end of
the sample at least when measuring materials with sufficiently low
permittivities, to prevent new propagating modes.
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A Lumped-Element Circulator without Crossovers

R. H. KNERR, SENIOR MEMBER, IEEE

Abstract—It is proposed to construct a simple ‘crossoverless”
lurhped-element circulator, which can be made without sophisticated
thin-film processing. The circulator can be described by a ‘“delta
connected” equivalent circuit. A simple capacitor arrangement can
be used to influence the three eigenvalue phases of the circulator
independently, thus permitting this circulator to be maximized sys-
tematically. A set of computer-generated eigenvalues gives insight
into the behdvior of the device under varying operating conditions.
Preliminary measurements using a very simple pattern on a 0.650-in-
diam ferrite substrate show a 20-dB bandwidth of 10 percent and dn
insertion loss < 1 dB (0.3 dB/min) at L band.
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INTRODUCTION

The construction of lumped-element circulators at higher fre-
quencies [1]-[3] was made possible by using thin-film crossover
techniques which, together with a new approach to broad banding,
lead to a completely symmetrical broad-band lumped-element
circulator. In order to eliminate processing problems at even higher
frequencies, some studies were made to construct a small circulator
which does not necessitate any complicated processing. Some pre-
liminary L band results show that it is possible to build such a
circulator. The theory proposed seems to be substantiated by eigen-
value measurements on a computerized network analyzer.

There exists a certain similarity with the ring cireulator [37], [4].
However, the ring circulator uses three delta connected nonreciprocal
phase shlfters and the devices realized are significantly larger and
more complicated than the present device.

THEORY

A lumped-element circulator with its Y-connected equivalent
circuit shown schematically in Fig. 1 can be represented by an
impedance matrix of the general form

Vi a (3 v I
Veol=|v a B ], or (V] =1[zJI]
Vs 8 v « I;

or in admittance form:

a b ¢
[I]=[ZJ[V), for[Z:T*=3¢ a b (1)
b ¢ a
where, in the lossless case,
Re () =0
B = —v* (2)

7* being the complex conjugate of .

Y and Z matrices have been chosen for the analysis becduse they
can be easily related to the equivalent circuit.

In the special case of Fig. 1,

a = oG ju)

= @ _-i _I_c\/g)
B=w ok Ty

= wG<—i +&\/§) (3)
v 247y

where @ is a geometry factor [1], [6] which determines the induct-
ance used in the equivalent eircuits, and x and k are the elements of
the Polder tensor:

v —jk O
e =poi gk o 0. (4)
0 0 1

In the case where losses are taken into account, u and k become
complex numbers which depend on frequency, applied magnetic
field, and material parameters. It ean be shown [6] that the matrix
equation (1), which is valid for the Y-connected three port, is also
valid for a A-connected one if the notation in Fig. 2 is used, i.e.,

Y “line” currents (I) become A “branch’ currents (I). Since we are
interested in terminal quantities, the matrix equation

1 =[Z1V] (5)

has to be transformed into

[e] = [¥:30x] (6)
using the notation in Fig. 2, where [6]



